PH1

© WJEC CBAC Ltd.

© WJEC CBAC Ltd

Question			Marking details	Marks Available
5	(a) (b)	(i) (ii) (iii)	$\begin{equation*} R=\frac{\rho \ell}{A} \tag{1} \end{equation*}$ ρ constant (1) Effect of change in l and A on $R(1)$ $\begin{array}{\|l} \text { CSA }=2.4 \times 10^{-10} \mathrm{~m}^{2} \\ l=6 \times 3.2 \times 10^{-2} \mathrm{~m} \tag{1} \end{array} \quad(=0.192 \mathrm{~m})$ Correct substitution into $R=\frac{\rho \ell}{A}$ to show $R=56[\Omega]$ $\begin{array}{\|l} 0.1 \% \times 56=0.056 \Omega \\ \Delta l=1.9 \times 10^{-4}[\mathrm{~m}] \quad \text { (ecf) } \tag{1} \end{array}$ Zig-zag pattern ensures long length of wire Therefore maximise Δl (or maximise ΔR - or equivalent) or measure strain in a small region (1) Question 5 Total	[3] [3] [2] [2] [10]
6	(a) (b)	(i) (ii) (iii)	No net force (1) No net moment (1) Downward pointing arrow placed in (approximate) centre of beam Clockwise: $(10 \times 1.5)+(20 \times 3)(1)$ Anti-clockwise: 40d (1) $d=1.875[\mathrm{~m}]$ (1) $10[\mathrm{~N}]$ (1) Downwards (1) Question 6 Total	[2] [1] [3] [2] [8]

Question				Marking details	Marks Available
7	(a)	(i)		Mass of air $=\rho A u(1)$ Convincing substitution into $1 / 2 m u^{2}$ (1)	[2]
		(ii)	$\begin{gathered} \text { (I) } \\ \text { (II) } \end{gathered}$		[2]
		(iii)		$1 / 2 A \rho\left(u^{3}-v^{3}\right)$ (or equivalent)	[1]
		(iv)		Turbines in front will have removed energy from the wind - or equivalent	[1]
		(v)		Substitution into $1 / 2 A \rho\left(u^{3}-v^{3}\right)$ (or equivalent) (1) $P=1644[\mathrm{~W}]$ (1) (-1 mark for error in A)	[2]
	(b)	(i)		Energy passing through blades insufficient to overcome friction of moving parts.	[1]
		(ii)		$\begin{align*} & \text { Efficiency }=54 \% \pm 1 \% \\ & P=888 \mathrm{~W}(\text { ecf from }(a)(\mathrm{v})) \text { UNIT mark } \tag{1} \end{align*}$	[2]
	(c)			Density of water much greater than density of air	[1]
				Question 7 Total	[12]

